And yet, there’s ample evidence that the planet was once much warmer and wetter, with lots of flowing and standing water on its surface. Over time, as Mars’ atmosphere was slowly stripped away, much of this water was lost to space, and what remains is largely concentrated around the poles as glacial ice and permafrost.
For years, space agencies have been sending robotic landers, rovers, orbiters, and aerial vehicles to Mars to learn more about when this transition took and how long it took. According to China’s Tianwen-1 mission, which includes the Zhurong rover, there may have been liquid water on the Martian surface later than previously thought.
New probe aids novel findings on cell functions
PHYSORG – Collaborative research at the University of Cincinnati has developed a new probe to better study cells that has already led to new knowledge about certain cellular processes.
UC’s Jiajie Diao, Ph.D., and Yujie Sun, Ph.D., are lead authors on new research published in ACS Sensors.
The team’s research focused on organelles, or specialized structures that perform various jobs inside cells, called endolysosomes. Lysosomes are organelles that act as the “recycling center” of the cell, reusing broken or malfunctioning building blocks for different purposes, and endolysosomes are a subset of lysosomes that begin as a different organelle called an endosome.
Lysosomes are an important organelle to study because abnormalities can lead to what are called lysosomal storage diseases that cause buildups of toxic substances in cells. Abnormalities in lysosome function are also associated with neurodegenerative diseases and cancer.